Specific epidermal growth factor receptors on porcine thyroid cell membranes

S. Atkinson, P.A. Smith, J.J. Taylor and P. Kendall-Taylor

Department of Medicine, University of Newcastle-upon-Tyne, England

Received 10 January 1983

Specific saturable receptors for epidermal growth factor (EGF) of high affinity (K_a 1.7 × 10⁹ M⁻¹) have been demonstrated on porcine thyroid membranes. Optimal conditions for EGF binding have been determined. TSH and other peptide hormones do not inhibit the binding of ¹²⁵I-EGF and EGF does not inhibit ¹²⁵I-TSH binding to thyroid membranes. The results suggest that EGF may be involved in the regulation of thyroid follicular cell growth and function.

Thyroid Epidermal growth factor Receptor Thyrotrophin

1. INTRODUCTION

Epidermal growth factor (EGF) is a polypeptide molecule that has potent mitogenic effects on cells of various origins [1,2], and the presence of specific, high affinity, saturable receptors has been demonstrated in many cell types [3].

Previous reports on the effect of EGF on thyroid cells have been conflicting. Some groups have reported an effect of EGF on thyroid cell proliferation in culture [4–6], others have reported no such effect [7–9]. Most relevant to the clarification of this issue is the demonstration of EGF receptors on thyroid cell membranes. A previous study has failed to detect EGF receptors on bovine thyroid membranes [10].

Here, we demonstrate the presence of specific, high affinity, saturable EGF receptors on porcine thyroid cell membranes.

2. MATERIALS AND METHODS

2.1. Iodination of EGF

EGF (Bethesda Res. Labs., Cambridge) extracted from male mouse submaxillary glands, was iodinated using Na¹²⁵I carrier-free (Amersham), by the following procedure. EGF (10 μ g) was dissolved in 10 μ l phosphate buffer (0.1 M, pH

7.4), 5 μ l (500 μ Ci) of Na¹²⁵I, 10 μ l (1.8 IU) of lactoperoxidase and 10 μ l of 1 mM H₂O₂ were added. The iodination mixture was incubated for 20 min at room temperature and the reaction then stopped by the addition of 200 μ l of ice-cold 0.1 M phosphate buffer containing bovine serum albumin (2%).

The iodination mixture was applied to a Sephadex G-50 column (30×1.2 cm) and eluted with phosphate buffer 0.1 M (pH 7.4), containing NaCl (50 mM) and BSA (0.1%). The peak of activity corresponding to $2.2 \times$ breakthrough volume was applied to an Amberlite IRA 400 ion-exchange column (15×1.2 cm) and the resulting peak pooled and stored at -70° C. By this procedure 125 I-EGF of spec. act. 28-40 Ci/g was obtained.

2.2. Preparation of thyroid membranes

Porcine thyroid tissue was collected fresh from a local abattoir and maintained on ice during the preparation. Fat and connective tissue was removed and discarded, cubes of tissue were homogenised in 8–10 vol. Tris (10 mM) buffer on a polytron tissue blender. The homogenates were centrifuged at $800 \times g$ for 10 min at 4°C, the pellet resuspended in 5 vol. Tris buffer and glass-glass homogenised. The suspension was centrifuged at $10000 \times g$

for 20 min at 4°C and the pellet resuspended in 10 mM Tris buffer + NaCl 50 mM + BSA 1% (pH 7.4) to give the appropriate concentration.

The protein concentration of the membrane preparation was estimated by the Lowry method [11]. Typically, 1 g tissue would produce 5-10 mg of protein in the membrane preparation.

2.3. Binding assay for EGF

Thyroid membrane preparations were diluted in Tris-NaCl-BSA buffer such that a $100 \,\mu l$ aliquot/tube gave a final membrane protein concentration of 1 mg/ml. A $200 \,\mu l$ aliquot/tube of serially diluted 'cold' EGF and $100 \,\mu l$ of ¹²⁵I-EGF dilution (20 pg, 5000 cpm) was added to each tube. Tubes were incubated for 1 h at 26°C in a shaking water bath, the reaction terminated by addition of 1 ml of ice-cold Tris-NaCl-BSA buffer and bound and free moieties separated by centrifuga-

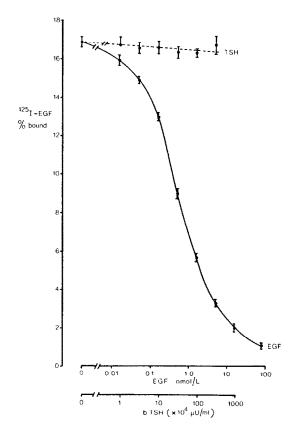


Fig. 1. Inhibition of binding of 125 I-EGF to porcine thyroid membranes by: (a) unlabelled EGF; (b) bovine TSH (mean \pm SEM, n = 3).

tion at $10000 \times g$ for 20 min at 4°C. The supernatant was aspirated and the radioactivity in the pellet counted.

3. RESULTS

3.1. Inhibition of ¹²⁵I-EGF binding to porcine thyroid membranes by unlabelled EGF

The inhibition of ¹²⁵I-EGF binding to porcine thyroid membranes by unlabelled EGF has been demonstrated (fig.1). The lower limit of detection of EGF was ~8 pmol/l (50 pg/ml). No further decrease in ¹²⁵I-EGF binding was detected above 82 nmol/l unlabelled EGF concentration which was consequently used to estimate non-specific binding.

Fig.2 illustrates the effect of thyroid membrane protein concentration on the binding of ¹²⁵I-EGF; a membrane protein concentration of 1 mg/ml was selected and used for all subsequent experiments.

3.2. Effect of incubation temperature on the time course of ¹²⁵I-EGF binding

Fig.3 illustrates the effect of incubation

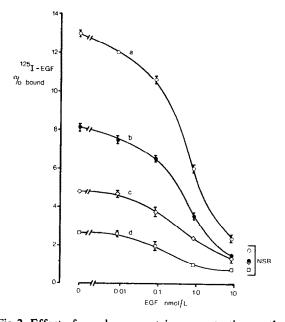


Fig. 2. Effect of membrane protein concentration on the binding of ¹²⁵I-EGF to thyroid membranes. Final membrane protein concentration: (a) 1.0 mg/ml; (b) 0.5 mg/ml; (c) 0.25 mg/ml; (d) 0.125 mg/ml. Values not corrected for non-specific binding (mean \pm SEM, n=3).

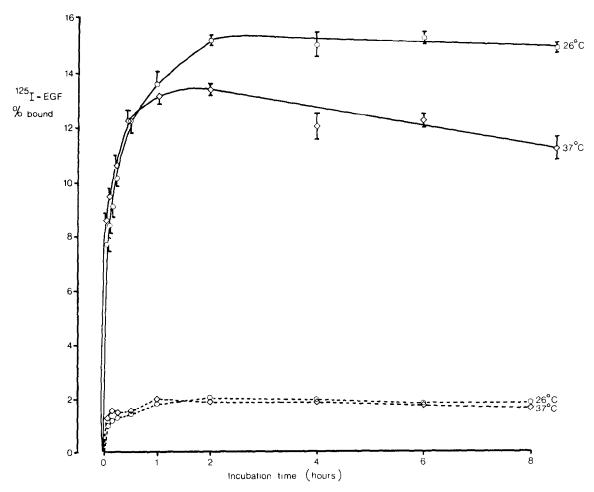


Fig. 3. Effect of incubation temperature on the time course of 125 I-EGF binding to porcine thyroid membranes: (——) total binding; (——) non-specific binding (mean \pm SEM, n = 3).

temperatures of 26°C and 37°C on the total and non-specific binding of ¹²⁵I-EGF to porcine thyroid membranes. Some degradation of EGF-receptor binding was noted after 1 h incubation at 37°C but not at 26°C. No significant temperature-or time-dependent effect on non-specific binding was noted.

3.3. Scatchard analysis of EGF binding to porcine thyroid membranes

Scatchard analysis of EGF binding (fig.4) identified receptor sites of high affinity (K_a 1.7 × 10^9 M⁻¹) and low capacity (2.5 × 10^{-10} M/mg membrane protein). At higher concentrations of ligand the participation of lower affinity binding sites is indicated. This experiment was repeated a further 4 times and similar values obtained.

3.4. Specificity of EGF binding to porcine thyroid membranes

The specificity of EGF binding to porcine thyroid membranes was investigated by measuring the inhibition of ¹²⁵I-EGF binding caused by cross-reacting hormones. Fig.1 illustrates the lack of cross-reactivity of bovine TSH (Thytropar, Armour Pharmaceuticals) at concentrations that inhibit all specific ¹²⁵I-TSH binding (see fig.5). Table 1 demonstrates the absence of ¹²⁵I-EGF binding inhibition resulting from incubation with various other peptide hormones.

Fig.5 illustrates the lack of cross-reactivity of EGF with porcine TSH receptors, as measured by the inhibition of binding of ¹²⁵I-TSH (40 pg, spec. act. 77.3 Ci/g) to porcine thyroid membranes (0.6 mg membrane protein/ml).

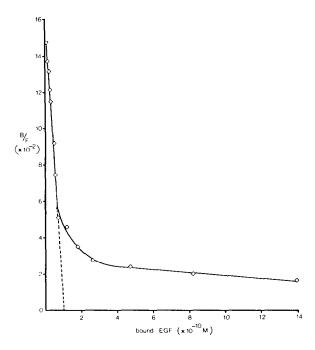


Fig.4. Scatchard analysis of EGF binding to porcine thyroid membranes.

4. DISCUSSION

This study clearly demonstrates the presence on porcine thyroid cell membranes of receptors for epidermal growth factor. These receptors are specific, saturable and of high affinity (K_a 1.7 × 10⁹ M⁻¹). High concentrations of bovine TSH did not inhibit the binding of ¹²⁵I-EGF to thyroid membranes, nor did EGF inhibit ¹²⁵I-TSH binding. The binding affinity of porcine thyroid EGF receptors is similar to values quoted for EGF receptors on other cell types (review [3]).

Epidermal growth factor has been shown both to be a potent mitogen to ovine thyroid cells in culture [5] and to control the proliferation and the expression of differentiation of canine thyroid cells in culture [6]. However, other studies have failed to demonstrate an effect by EGF on the proliferation of rat [7,9] or bovine [7] thyroid cells. The reason for these discrepancies is not clear but might involve differences in responsiveness of the experimental species used. EGF is a physiologically occurring plasma hormone [12] which has also been extracted from thyroid tissue [13]. The demonstration of EGF receptors on thyroid cell membranes indicates that thyroid tissue may be a

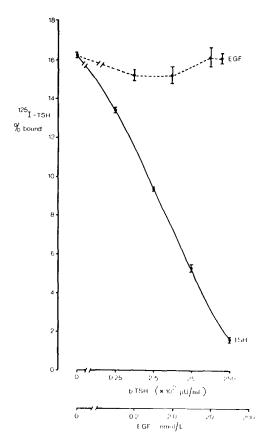


Fig. 5. Inhibition of binding of 125 I-TSH to porcine thyroid membranes by: (a) unlabelled TSH; (b) EGF (mean \pm SEM, n = 3).

Table 1

Effect of various hormones on the binding of ¹²⁵I-EGF to porcine thyroid membranes

Hormone	Conc.	¹²⁵ I-EGF % bound (mean ± SEM)
None	_	16.5 ± 0.3
EGF	82 nmol/l	12 ± 0.1
hTSH	54 nmol/l	16.5 ± 0.4
LH	17 nmol/l	15.8 ± 0.3
FSH	17 nmol/l	15.8 ± 0.4
ACTH	6 μmol/l	15.7 ± 0.3
Glucagon	70 µmol/l	15.7 ± 0.1
Insulin	100 nmol/l	15.6 ± 0.5
Somatostatin	$3 \mu \text{mol/l}$	17.5 ± 0.8

site of hormonal action of EGF. Further evidence for a relationship between EGF and the thyroid gland is the T₄ stimulation of EGF synthesis by neonatal mouse submaxillary glands [14].

This study suggests that EGF may have a specific role in the regulation of thyroid follicular cell growth and function in normal and pathological situations.

ACKNOWLEDGEMENTS

This work was supported by grants from the Medical Research Council and the Newcastle Health Authority.

REFERENCES

- [1] Carpenter, G. and Cohen, S. (1979) Annu. Rev. Biochem. 48, 193-216.
- [2] Gospodarowicz, D. (1979) Mol. Cell. Biochem. 25, 79-110.
- [3] Adamson, E.D. and Rees, A.R. (1981) Mol. Cell. Biochem. 34, 129-152.

- [4] Westermark, B., Karlsson, A. and Westermark, K. (1981) Ann. d'Endocrinol. t.42 abstr.54.
- [5] Westermark, K. and Westermark, B. (1982) Exp. Cell. Res. 138, 47-55.
- [6] Roger, P.P. and Dumont, J.E. (1982) FEBS Lett. 144, 209-212.
- [7] Gospodarowicz, D., Greenburg, G., Bialecki, H. and Zetter, B.R. (1978) In Vitro 14, 85-118.
- [8] Ambesi-Impiombato, F.S., Parks, L.A.M. and Coon, H.G. (1980) Proc. Natl. Acad. Sci. USA 77, 3455-3459.
- [9] McKeehan, W.L., McKeehan, K.A., Hammond, S.L. and Ham, R.G. (1977) In Vitro 13, 399-415.
- [10] Gospodarowicz, D., Ill, C.R., Hornsby, P.J. and Gill, G.N. (1977) Endocrinology 100, 1080-1089.
- [11] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- [12] Starkey, R.H. and Orth, D.N. (1977) J. Clin. Endocrinol. Metab. 45, 1144-1153.
- [13] Hirata, Y. and Orth, D.N. (1979) J. Clin. Endocrinol. Metab. 48, 667–672.
- [14] Walker, P., Weichsel, M.E., Hoath, S.B., Poland, R.E. and Fisher, D.A. (1981) Endocrinology 109, 582-587.